Photonic Integration with Dielectric-Loaded SPP Waveguides

<u>A.V. Krasavin</u>, P.M. Bolger and A.V. Zayats The Queen's University of Belfast, UK

T. Holmgaard, Z. Chen and S.I. Bozhevolnyi Aalborg University, Denmark

L. Markey and A. Dereux CNRS-Université de Bourgogne, France

E-mail: a.krasavin@qub.ac.uk Phone: +44 28 9097 3511

NFO-10, 2 September 2008, Buenos Aires

From photonic guiding to integration

Conventional optical waveguides

A. Diffraction limit

B. Bend size limit

~λ/(2n)

θ

 $k_0 sin(\theta)$

Solution: SPP waves

SPP waveguide

Important length scales: Wavelength ~> wavelength of light Propagation length ~ 100 μm

Penetration into: dielectric ~ 1 mm metal ~ 10 nm

SPP waveguides: super-high localization

Gap SPP waveguides

Liu et al., Opt. Exp (2005)

Liu et al., Opt. Exp (2005)

Chen et al., APL (2006)

SPP nanoparticle waveguides

Maier et al., Adv. Mat. (2001)

SPP waveguides: super-high localization

Channel and wedge SPP waveguides

Bozhevolnyi et al., Opt. Exp. (2006), Yan et al., JOSAB (2007)

Bozhevolnyi et al., Nature (2006)

Long range stripe SPP waveguides

Derigon et al., PRA (2008)

Dielectric-loaded SPP waveguide

- High localization
- High level of integration
- Thermo-, electro, all-optical functionalities
- Easily fabricated and integrated to optoelectronics and electronics

DLSPP Waveguide

The Ultimate Level of Integration

AV Krasavin and AV Zayats, APL 90, 211101 (2007)

EC FP6 IST STREP PLASMOCOM www.plasmocom.org

90 Degrees Bend Guiding

www.plasmocom.org

AV Krasavin and AV Zayats, APL 90, 211101 (2007)

S-bends

Splitters

Asymmetric splitter

AV Krasavin and AV Zayats, PRB 78, 045425 (2008)

Fabrication: critical distance vs. splitter performance

Bragg Reflector

www.plasmocom.org

AV Krasavin and AV Zayats, PRB 78, 045425 (2008)

Mach-Zehnder Interferometer

Lossless Propagation of DLSPPWG Mode

Analytical calculation, plane metal/dielectric (n=1.535) surface case

$$k_{SPP} = \frac{\omega}{c} \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}$$

$$\varepsilon_1 = \varepsilon_1' + i\varepsilon_1''$$

$$\varepsilon_2 - \text{real} \qquad \underbrace{\text{Gain}}_{\varepsilon_2} \quad \varepsilon_2 = \varepsilon_2' - i\varepsilon_2''$$

Numerical simulation, DLSPPW case

AV Krasavin and AV Zayats, PRB 78, 045425 (2008)

Lossless Bends and Splitters

AV Krasavin and AV Zayats, PRB 78, 045425 (2008)

Enhancing (Active) Element

Conclusions

- 1. DLSPPW are highly efficient means of localization and guiding of optical mode
- 2. Found the ultimate level of DLSPPW integration: distance between waveguides can be as small as 2.6 μm
- 3. Demonstrated highly efficient bending, splitting and reflecting elements on the basis of DLSPPW having just a micrometer size.
- 4. Experimentally proved guiding properties of main passive DLSPPW elements.
- 5. Estimated the requirements of lossless propagation of the mode and demonstrated the performance of DLSPPW lossless and active elements.

