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S
urface plasmons have drawn consider-
able attention for the past decade be-
cause of their ability to route and man-

ipulate light at the nanoscale.1-4 Squeezing
light into nanoscale volumes greatly boosts
light-matter interactions as shown by sur-
face-enhanced Raman scattering (SERS),5,6

enhanced fluorescent emission,7,8 or high
harmonic generation experiments.9 There
have been tremendous efforts to design
and optimize nanostructures in order to
obtain the best efficiency in light harvesting
and nanofocusing. Until now, this opti-
mization has mainly relied on numerical
simulations.10,11 The latter ones are useful but
quite misleading since they somehow fail to
highlight the physics hidden behind the calcu-
lations. Recently, a more powerful approach
based on transformation optics has been pro-
posed to derive analytically the optical re-
sponse of complex nanostructures.12 It
consists in finding a conformalmap that trans-
forms the plasmonic nanostructure under in-
vestigation into a simpler plasmonic system
that can be solved analytically. Transformation
optics closely links the physics at work in each
of the different geometries and gives a unique
physical insight on the propagation of surface
plasmons in complex nanostructures. In a
recent letter,13 this strategy has been applied
to the interaction between nanoparticles.
Some results of the analytical calculations have
been presented to analyze the spatial and
spectral properties of the field enhancement
in the gap separating two nanoparticles. How-
ever, no analytical proof has been provided. In
this article, the corresponding theory is derived
in details and more physical insights are pro-
vided especially with respect to the invisibility
dips appearing in the scattering spectrum.13

Note that several experimental works have
dealt recently with metallic nanowires (see e.

g., refs 14 and 15). The case of a nanowire or a

nanosphere placed in the vicinity of a metal
platehasalsodrawnagreatdeal of attention in
plasmonics whether it be for nanolaser
applications16 or SERS experiments.17 Conse-
quently, this configurationwill be addressed in
this paper and shown to be closely related to
the dimer case.
The localized surface plasmon (LSP) reso-

nances supported by coupled nanoparticles
were first introduced by Bergman18-20

and then by McPhedran using conformal
mapping21,22 in the context of effective
medium theory, 30 years ago. This topic
was then resuscitated by the emergence
of plasmonics in the past decade. Whereas
an isolated nanoparticle only exhibits a single
dipole resonance around the surface plasmon
frequency, several resonances may arise in the
visible/near-infrared spectra for dimers23-31

and lead to a drastic field enhancement in
the narrow gap separating the two nanop-
articles.32-35 An elegant physical picture to
describe this interaction is the plasmon hybri-
dization model proposed by Peter Nordlan
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ABSTRACT The interaction between metallic nanowires and a metal substrate is investigated by

means of transformation optics. This plasmonic system is of particular interest for single molecule

detection or nanolasers. By mapping such a plasmonic device onto a metal-insulator-metal

infinite structure, its optical response can be fully derived analytically. In this article, the absorption

cross-section of a nanowire placed close to a metallic surface is derived within and beyond the quasi-

static limit. The system is shown to support several modes characterized by a different angular

momentum and whose resonance red-shifts when the nanoparticle approaches the metal substrate.

These resonances give rise to a drastic field enhancement (>102) within the narrow gap separating

the nanoparticle from the metal surface. The case of a nanowire dimer is also investigated and is

closely related to the previous configuration. More physical insights are provided especially with

respect to the invisibility dips appearing in the radiative spectrum. Numerical simulations have also

been performed to confirm our analytical predictions and determine their range of validity.
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hybridization . metal surface . invisibility dips
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der and colleagues, a few years ago.36-40 However, this
model still demands numerical simulations to obtain
the optical response of nanostructures. On the con-
trary, transformation optics provides an elegant and
powerful tool to solve analytically complex plasmonics
problems.12,41-45 By applying a conformal transforma-
tion that we will describe, a nanowire dimer can be
transformed into a system consisting of an array of
dipoles sandwiched between two semi-infinite metal
slabs (see Figure 1). The slab problem can be easily
solved analytically under the electrostatic approxima-
tion. Then, by conformalmapping, the behavior of LSPs
and their coupling with the external field are deduced
in the transformed geometry. This problem can be de-
composed as a sum of modes denoted by a discrete
angular momentum n in agreement with the hybridiza-
tion picture.13 The absorption cross-section and the elec-
tric field distribution in the near-field of the nanowires are
expressed analytically. These theoretical results are com-
pared to numerical simulations and a perfect agreement
is found for structure dimensions up to 20 nm.
Our theory is then extended beyond the quasi-static

limit by considering radiative damping.46 The scatter-
ing spectrum of the dimer displays some invisibility

dips resulting from the destructive interference be-
tween the modes supported by the dimer. In this
article, we investigate the electric field distribution
associated to these invisibility dips and show that the
interference between each mode is constructive in the
near-field, albeit destructive in the far-field. Taking
into account radiation damping also allows the

derivation of new analytical expressions for the scatter-
ing and absorption cross sections, as well as for the
field enhancement. These theoretical results are com-
pared to numerical simulations, and a nice agreement
is found for structure dimension up to 100 nm. Con-
sidering a gap of 0.5 nm as being the limit for quantum
mechanical effects47 and a nanowire diameter of 10
nm as being the limit for neglecting nonlocal effects,48

themaximum field enhancement that may be induced
by the nanowire dimer is found to be of the order of
200 within a classical approach.
In the second part of this paper, the plasmonic

structure consisting of a nanowire placed on top of a
metal substrate is investigated and shown to be
strongly related to the dimer case. The hybridization
between the surface plasmon propagating along the
metal plate and the localized surface plasmon sup-
ported by the nanowire leads to the occurrence of
several resonances in the visible spectrum. A strong
field enhancement is expected within the narrow layer
separating the nanowire and the metal plate at the
corresponding resonant frequencies. The originality of
this configuration consists first in solving this problem
with a quasi-static approach whereas themetal plate is
semi-infinite. However, as the field is extremely con-
fined in the narrow gap separating the nanoparticle
and the metal substrate, our approach is valid as long
as the nanowire is small compared to the wavelength
(of diameter D < 100 nm). This will be confirmed by
numerical simulations. Second, a half plane-wave illu-
mination of the system is considered due to the
infiniteness of the metal substrate. This will require a
refining of the theory compared to the first part of the
article and previous works. The absorption cross-sec-
tion of the nanowire as well as the field enhancement
induced by the system are both derived theoretically
and show a remarkable agreement with numerical simu-
lations for nanowire diameter up to 100 nm. In this
configuration, the nanowire benefits from the presence
of the metal plate to harvest light more efficiently and
induce strong field enhancements (>102). This configura-
tion is thus an excellent candidate for single molecule
detection as already pointed out in past studies.17,49

RESULTS AND DISCUSSIONS

Plasmonic Interaction between Two Nanowires. The plas-
monic interaction between two nanowires is ad-
dressed in this section. First, the conformal transfor-
mation mapping the nanowire dimer problem onto a
slab geometry is presented (Figure 1). The solution of the
slab problem allows an analytical derivation of the ab-
sorption cross-section and the electric field distribution
under the quasi-static approximation. Following a strat-
egy presented in ref 46, the radiation damping is then
taken into account by introducing fictive absorbing par-
ticles in the slab geometry.

Figure 1. (a) Two semi-infinite metallic slabs separated by a
thin dielectric film support surface plasmons that couple to
an array of dipoles Δ̂ (blue arrows). The array pitch is 2π. An
array of absorbing particles is superimposed to the dipole
sources to take into account the radiative damping. (b) The
transformed material of panel a is a pair of cylinders of
diameter D, separated by a narrow gap δ. The dipole
sources Δ̂ are transformed into a uniform electric field E00 .
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Conformal Transformation. Our canonical system
is an array of dipoles oriented along the x-axis and
aligned along the y-axis, with a pitch of 2π, located in a
thin slab of insulator of thickness d surrounded by two
semi-infinite metal slabs (Figure 1a). Now apply the
following conformal transformation,

z0 ¼ g

exp(z)- 1
(1)

z= xþ iy and z0 = x0 þ iy0 are the usual complex number
notations in the original and transformed frames,
respectively; g is an arbitrary constant. The transformed
material consists of a pair of nanowires separated by a
narrow gap (see Figure 1b).The diameter of the two
cylinders is given by

D ¼ g

sinh(d=2)
(2)

The distance δ separating the two cylinders can be
expressed as

δ ¼ g tanh(d=4) (3)

We also define a key parameter,

F ¼ δ

2D
¼ sinh2(d=4) (4)

which is the ratio between the gap δ separating the
two cylinders and two times their diameter, 2D. All the
physical quantities that we will derive in this section
(absorption and scattering cross sections, field
enhancement) will be expressed as a function of this
ratio F and of the cylinder diameterD. From eq 2-4, we
can express g and d as a function of F and D:

g ¼ 2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F(1þ F)

p
(5)

d ¼ 4 ln(
ffiffiffi
F

p þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ F

p
) (6)

These last expressions will be useful when we will
deduce from the slab problem the solution in the
transformed geometry. The shift s between the axis y0

and the surface of the cylinder (see Figure 1b) is given by

s ¼ g

(1þ ed=2)
¼ 2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F(1þ F)

p

1þ (
ffiffiffiFp þ ffiffiffiffiffiffiffiffiffiffiffi

1þ F
p

)2
(7)

At last, the overall physical cross-section Do of the
nanowire dimer can be expressed as

Do ¼ 2Dþ δ ¼ 2D(1þ F) (8)

Transformation of the sources is also shown in
Figure 1. The original dipoles Δ̂ are transformed into
a uniform electric field,

E0
0 ¼ Δ̂

2πε0g
(9)

Note that we made the choice of an electric field E00

polarized along x0 since Δ̂ is assumed to be aligned

along x. Actually, this polarization is by far more
efficient to excite surface plasmon modes than a
transverse polarization (along y0).12 In a first step, we
will assume that the cylinder pair is sufficiently small
such that the surface plasmon modes are well de-
scribed in the quasi-static approximation. The uniform
electric field E00 can then be considered as due to an
incident plane wave. Furthermore, in this case, the
dielectric properties of the nanostructure are the same
as those of the slab from which it is derived. Also
preserved under the transformation is the electrostatic
potential:

φ(x, y) ¼ φ0(x0, y0) (10)

Hence, solving the relatively tractable slab problem
(Figure 1a) solves the dimer problem (Figure 1b). The
electrostatic potential in the slab geometry is derived
in the Methods section (eqs 55-57).

Light Harvesting in the Quasi-static Limit. As shown
in previous works,42,43,46 dipoles and fields exchange
their role in the two frames: the emitting dipole Δ̂ in
the slab geometry is transformed into a uniform
incident field E00 (eq 9), whereas the backscattered
electric field at the dipole location, E(z = 0), directly
provides the dipole moment p of the nanostructure in
the transformed frame,

p ¼ 2πε0gE(z ¼ 0) (11)

The energy dissipation is thus the same in the original
and transformed frames. Hence, by computing the
dipole power dissipated in the slab geometry, one
can deduce the power absorbed by the nanowires in
the dimer geometry.

Let us compute the energy dissipated in the
original frame. From the expression of the induced
potential φ for |x |< d/2 derived in the Methods
section (eq 55), we can deduce the electric field at
the dipoles

E(z ¼ 0) ¼ -rφ(z ¼ 0) ¼ -
Δ̂

πε0
β (12)

with

β ¼ ε- 1
εþ 1

Xþ¥

n¼ 1

n

end -
ε- 1
εþ 1

(13)

The dissipated power, Pa, can then be deduced from
this backscattered electric field:

Pa ¼ -
ω

2
ImfΔ̂� 3E(z ¼ 0)g (14)

If we inject the expression of E(z = 0) (eq 12) into the
last equation, replace g, d, and Δ̂ by their expressions
(eqs 5,6, and 9) and renormalize Pa by the incoming
flux Pin = ε0c0|E00 |

2/2, we can derive the absorption
cross-section σa

o = Pa/Pin of the cylinder pair under the
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electrostatic approximation,

σo
a ¼ 16πk0F(1þ F)D2

� Im
ε- 1
εþ 1

Xþ¥

n¼ 1

n

(
ffiffiffi
F

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ F

p
)4n -

ε- 1
εþ 1

8><
>:

9>=
>; (15)

where the superscript o accounts for the quasi-static
approximation and k0 = ω/c0 is the wavenumber in
vacuum. Note that, rigorously, this expression corre-
sponds to the extinction cross-section. However, as
radiation losses are neglected under the quasi-static
approximation, this quantity is here strictly equivalent
to the absorption cross-section. σa

o scales as the square of
the diameter D of the cylinders, which is typical of a 2D
configuration. The absorption cross-section is the sum of
each contribution due to the surface plasmon modes
supported by the cylinder pair and denoted by their
angular moment n. Each mode may give rise to a
resonance at a frequency satisfying the following relation

(
ffiffiffi
F

p þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ F

p
)4n ¼ Re

ε- 1
εþ 1

� �
(16)

Note that this condition of resonance only depends on
the ratio F between the gap separating the nanoparticles
and two times their diameters (eq 4).

Figure 2 illustrates this resonant feature by display-
ing σa

o/Do as a function of frequency for different values
of F and for an overall physical cross-section Do = 20
nm. For this figure as well as in the following of the
study, the metal is assumed to be silver with a surface
plasmon frequency ωsp = 3.67 eV and permittivity
taken from Johnson and Christy.50 Our theoretical
predictions are compared to numerical simulations
performed with the software Comsol. The perfect
agreement between theoretical and numerical curves
shows how our theory can accurately predict the

optical response of nanowire dimers in the quasi-static
limit.

As shown in Figure 2 and as already discussed in ref
13, the absorption spectrum is strongly dependent on
the gap separating the two nanoparticles. In the strong
coupling regime, several resonances associated to
small angular momenta n start to arise at a smaller
frequency thanωsp and tend to red-shift when the two
nanoparticles approach each other.13 When a reso-
nance occurs, the cylinder pair constitutes a powerful
light harvesting device for an incident wave polarized
along x0 (see Figure 2). Even for such a small particle
size (Do = 20 nm), the absorption cross-section can be
superior to the physical cross-section. For constant
ratio F, σa/Do scales linearly with Do. Thus higher cross
sections could be obtained for larger cylinders, but in
this case our near field analytic theorymay not be valid
as we will see in the following. On the contrary, the
device does not exhibit any multi-resonant feature if
the incident wave is polarized along y0 (results not
shown here). Only one peak is observed around ω =
ωsp due to the individual resonance of each nanowire.
This fact has already been pointed out in previous
numerical studies.24

Nanofocusing in the Quasi-static Limit. Now that
the light harvesting properties of the nanowires have
been studied under the quasi-static approximation, we
now focus on the electric field induced in the near-field
of the dimer. Each of the resonances pointed out
previously is associated to a particular distribution of
the electric field. The nanowire dimer is shown to lead
to a strong far-field to near-field conversion of energy:
a considerable confinement and amplification of the
electric field can be found in the narrowgap separating
the two nanoparticles.

Under the conformal transformation, the potential
is preserved (eq 10). The electric field E0(x0,y0) in the
transformed geometry can then be easily deduced
from the potential,

E0
x0 ¼ -

∂φ0

∂z0
∂z

∂x0
-

∂φ0

∂z0
�
∂z0

�

∂x0
¼ -

∂φ0

∂z0
-

∂φ0

∂z0
� (17)

E0
y0 ¼ -

∂φ0

∂z0
∂z

∂y0
-

∂φ0

∂z0�
∂z0

�

∂y0
¼ - i

∂φ0

∂z0
þ i

∂φ0

∂z0�
(18)

The expression of the potential φ derived in the
Methods section (eqs 55-57) can be injected into
the last equation. It turns out that the electric field
can be decomposed as an infinite sum of modes,

E0 ¼
X¥
n¼ 1

Ψ(n) (19)

The analytical expression of the modes Ψ(n) is derived
in the Methods section (eqs 58-63). Note that in the
near field approximation, the enhancement of electric
field is independent of the size of the system.

Figure 2. Absorption cross-section σa
o normalized by the

physical cross-section Do as a function of frequency for
different valuesof F=100, 10-1, 10-2, 10-3, withDo = 20nm.
The quasi-static theoretical predictions (continuous lines,
eq 15) are compared to numerical simulations (dots). The
case of kissing cylinders (F = 0, black continuous line) is also
shown for comparison.12,42 The metal is assumed to be
silver with a surface plasmon frequency ωsp = 3.67 eV and
permittivity taken from Johnson and Christy50.
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Figure 3 shows the result of our analytical calcula-
tion of the first three modes taken at their resonant
frequencies (eq 16). The gapδ is fixed toD/50 (F= 0.01).
The metal is assumed to be silver with permittivity
taken from Johnson and Christy.50 Figure 3 plots a and
b represent the imaginary part of the field distribution
along x0 and y0, respectively. These figures can be easily
interpreted with conformal transformation. In the slab
frame, the surface plasmon modes transport the en-
ergy of the dipoles along the surface of the metal slabs
(see Figure 1). The same modes are excited in the
transformed frame and propagate along the cylinder
surface. As they approach the gap separating the two
nanoparticles, the LSPs supported by each nanoparti-
cle couple to each other, their wavelength shortens,
and group velocity decreases in proportion. This leads
to an enhancement of the field in the narrow gap.
However, contrary to the kissing cylinders,12 the velo-
city of LSPs does not vanish, and energy cannot
accumulate infinitely in the narrow gap. Instead, LSPs
propagate indefinitely around the cylinders, leading to
the resonant behavior pointed out previously.

Figure 3c represents the imaginary part of the field
along the surface of the cylinders. The comparison
between each mode allows the confirmation of our
previous qualitative description: the angular momen-
tum n associated to each mode corresponds to the
number of spatial periods covered by the surface

plasmon when propagating around one nanowire.
Figure 3c also highlights the drastic field enhancement
that can be induced within the gap between the
two nanoparticles. Typically, for δ = D/50, the field
enhancement |E0|/E0 can reach a value of 600. Note that
the field enhancement is less than 1 order of magni-
tude of the value obtained for kissing cylinders
(∼104).12,42

Scattering Spectrum and Invisibility Dips. A recent
article46 has shown how the radiative losses in the
transformed frame can be mapped directly onto a
fictive absorbing particle in the original geometry. This
can be done by considering the scattered field Es0 in the
near-field of the nanostructure. In free space, if we
neglect the real part of the dyadic Green function
linking the dipole moment to the scattered field, Es0 is
given by46

E0
s ¼ - i

ko
2

8εo
p (20)

The scattered field is uniform in the near field of the
nanoparticle and its counterpart in the slab geometry
corresponds to an array of dipoles, Δ̂s = 2πε0gEs0 , super-
imposed to the original dipoles Δ̂ (Figure 1). Replacing Es0

by its expression in (eq 20) and the dipole moment p by
(eq 11) yields the following expression for Δ̂s,

Δ̂s ¼ - i
π2

2
εog

2ko
2E(z ¼ 0) (21)

Figure 3. Electric field for F = 0.01 associated with the modes n = 1,2,3 (from left to right) at their corresponding resonant
frequencies (eq 16). (a) Amplitude of the imaginary part of ψx0

(n) normalized by the incoming field E00 (polarized along x0). (b)
Amplitude of the imaginary part ofψy0

(n) normalizedby the incomingfield E00 (polarized along x0). For a andbplots, the color scale is
restricted to [-1010] butnote that thefieldmagnitude canbe far larger in thenarrowgapbetween the structures. (c) Amplitudeof
the imaginary part of ψx0

(n)/E00 (blue) and ψy0
(n)/E00 (red) along the cylinder surface as a function of the angle θ defined in the figure.
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The strengthof thesedipoles Δ̂s is directlyproportional to
the incident fieldE(z=0). Hence they correspond to small
absorbing particles of polarizability γs = -i(π2/2)εog

2ko
2,

accounting for the radiative losses in the transformed
geometry.

The power radiated by the nanostructure is equiva-
lent to the power absorbed by these fictive adsorbing
particles in the slab frame,

Ps ¼ -
ω

2
ImfγsgjE(z ¼ 0)j2 (22)

If we inject the expressions of E(z= 0) (eq 12),γs (eq 21),
and g (eq 5) into the last equation and normalize it by
the incoming flux Pin = ε0c0|E00 |

2/2, the scattering cross-
section σs

o of the nanowire dimer can be deduced in
the quasi-static limit,

σo
s ¼ 32π2ko

3F2(1þF)2D4

�
������
ε- 1
εþ 1

Xþ¥

n¼ 1

n

(
ffiffiffi
F

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ F

p
)4n -

ε- 1
εþ 1

������
2

(23)

The radiative spectrum exhibits the same resonant fea-
ture as observed previously for the absorption spectrum
(eq 16). Figure 4 illustrates this fact by showing the
absorption and scattering cross sections for F = 0.01
and Do = 20 nm. As already pointed out in ref 13, the
resonances displayed by the scattering cross-section
clearly exhibit an asymmetric lineshape. We stress on
the fact that these are not Fano resonances which
correspond usually to the coupling between bright and
dark modes and manifest themselves in the extinction
spectrum.51-54 The sharp dips in the radiative spectrum
areduehere to thedestructive interferencebetweeneach
successive brightmode. Typically, the sharp dip observed
at ω = 0.85ωp in Figure 4 results from the destructive
interference between the modes n = 1 and n = 2 which
resonate on each side of the dip. This feature can be
promising in theperspectiveof sensingapplications, since

the ratio between the absorption and scattering cross
sections can reach for instance a value of 150 in the
conditions considered in Figure 4 (F = 0.01, Do = 20 nm).

Figure 5 shows the electric field distribution asso-
ciated with these invisibility dips. Figure 5a represents
the field along one of the nanowire plotted as a
function of θ at the first invisibility dip frequency for
F = 0.01 (i.e., atω = 0.85ωsp, see Figure 4). The real part
of the total electric field along the x0-direction, Ex00 /E00 , as
well as the respective contributions of the first two
modes, Ψx0

(1)/E00 and Ψx0
(2)/E00 , are compared. Figure 5a

shows that the first two modes interact constructively
within the narrow gap separating the two nanoparti-
cles, hence leading to a large field enhancement (>102)
even if we are out of the resonance. Figure 5b and
Figure 5c show the spatial distribution of the total
electric field, Ex00 /E00 , and the contributrion of the first
mode, Ψx0

(1)/E00 , respectively. The area where the in-
duced electric field is enhanced compared to the
incoming beam amplitude is surrounded by a black
dashed line. Whereas the enhancement area spreads
outside of the nanowire dimer when only the first
mode is considered (Figure 5c), most of the energy is
confined within the gap when the total electric field is
considered (Figure 5c). The interference between the
first two modes is constructive inside the gap but
destructive outside, hence leading to a weak radiative
coupling. At these invisibility dip frequencies, the nano-
wiredimer acts as an invisiblenanoantenna that can focus
light efficiently at the nanoscale without being seen from
the far-field. This idea is in relation with the concept of
sensor cloaking proposed recently by Al�u and Engheta.55

Beyond the Quasi-static Limit. Until now, all the
theoretical results have been derived under the qua-
si-static approximation. This is quite restrictive in

Figure 4. Scattering (in red) and absorption (in blue) cross
sections,σs

o andσa
o, normalizedby the overall physical cross-

section Do = 20 nm, as a function of frequency for F = 0.01.
The quasi-static theoretical predictions (continuous lines,
eq 15 and eq 23) are compared to the results of numerical
simulations (dots).

Figure 5. The main panel (a) represents the real part of Ex00 /
E0
0 (blue) and the respective contributions of the first mode
(red) and of the second mode (green) along the surface of
the nanowire as a function of θ, for F = 0.01. These plots are
made at the first invisibility dip (ω = 0.85ωsp, see Figure 4).
The two subpanels represent the corresponding field dis-
tributions: Ex00 /E00 (b) and ψx0

(1)/E00 (c). For both subpanels, the
black dashed line surrounds the area of amplification of the
field, that is, the region for which |E0|/E00 > 1 and |Ψ(1)|/E00 > 1,
respectively. The color scale is linear and restricted to
[-10;10], but note that the field is by far larger within the
narrow gap.
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perspective of applications since it can only apply to
nanostructures of a few tens of nanometers (typically
20 nm). Hence, the conformal transformation approach
has to be extended beyond the quasi-static limit by
considering the radiative reaction. In the transformed
frame, it corresponds to the self-interaction between
the dimer and its own scattered field.56,57 In the slab
frame, this radiative reaction corresponds to the field
scattered by the fictive absorbers and back-emitted
toward the metal slabs.46 This contribution can be
easily derived in the slab geometry, adding the con-
tribution of the absorbing dipoles Δ̂s to the expression
of the induced electric field E(z = 0) in eq 12,

E(z ¼ 0) ¼ -
(Δ̂þ Δ̂s)

πε0
β (24)

Replacing Δ̂s by its expression (eq 21) in the last
equation allows the derivation of a new expression of
E(z = 0) in presence of radiative losses,

E(z ¼ 0) ¼ -
Δ̂

πε0

β

1- i
π

2
g2ko

2β
(25)

If we inject this new expression of E(z = 0) into eq 14,
replace Δ̂ (eq 9) and g (eq 5), a new expression for the
extinction cross-section can be deduced beyond the
quasi-static limit,

σext ¼ 16πk0F(Fþ 1)D2 Im
β

1- i2πF(1þ F)D2ko
2β

� �
(26)

By comparing this expression of σext with the one
derived under the quasi-static approximation (eq 15),
one can see that the radiative correction leads to a
renormalization of the extinction spectrum by a factor
appearing at the denominator of eq 26. The effect of
radiative losses has already been investigated in a
related work and our approach has been shown to be
valid until Do = 200 nm (see the Figure 3 of ref 13). The
radiative damping leads to a saturation of the extinction
cross-section at the level of thephysical cross-section and
also to a broadening of each LSP resonance.

A new expression of the radiated power can also be
derived by injecting the new expression of E(z = 0)
(eq 25) into eq 22. Then, after renormalization, a new
expression of the scattering cross-section is found
beyond the quasi-static limit,

σs ¼ 32π2k3oF
2(1þF)2D4 jβj2

j1- i2πF(1þ F)D2ko
2βj2

(27)

Radiative damping leads to a renormalization of the
scattering cross-section. Whereas a scaling of σs

o as D4

was predicted in the quasi-static limit (eq 23), radiative
damping makes the scattering cross-section saturate
at the level of thephysical cross-section for large structure
dimensions, as illustrated by Figure 3 of ref 13.

In the quasi-static limit, the near-field enhancement
does not depend on the size of the device. However,
radiative damping breaks this property and limits the
nanofocusing properties of the dimer. Comparing the
expressions of the electric field E(z = 0) in the slab
frame neglecting (eq 12) or considering (eq 25) radia-
tive damping, one can see that the presence of an
absorber accounting for radiative losses leads to the
renormalization of the emitting dipole Δ̂ by a factor,

η ¼ 1- i
π

2
g2ko

2β (28)

The same correction can be made in the transformed
frame. Radiative reaction requires the renormalization
of the electric field by the same factor η. Using eq 5, this
factor can be expressed as a function of D

η ¼ 1- 2iπF(1þ F)D2k2oβ (29)

The effect of the radiative losses on the field enhance-
ment is shown in Figure 6. The imaginary part of Ex00 /E00

along the surface of the nanowire is displayed at the
first resonant frequency ω = 0.8ωsp for F = 0.01. The
theoretical and numerical results are compared for differ-
ent dimensions Do = 20, 50, 100 nm, and a good agree-
ment is found. The radiation losses lead to a renor-
malization of the electric field by the factor η which
increases with the structure dimension (eq 29). For Do =
100 nm, a slight disagreement starts to appear between
theory and numerical simulations, due to the retardation
effects which are not taken into account by our model.13

Figure 7 shows a more systematic investigation of
the nanofocusing performance that can provide a
nanowire dimer. It shows the maximum field enhance-
ment obtained at the first resonance (eq 16 for n= 1) as
a function of F and D. Note that the maximum field
enhancement occurs at the surface of the nanowires, i.
e., at z0 =-s and z0 =-s- δ (Figure 1). Not surprisingly,
the radiative losses make the field enhancement de-
crease when the structure dimension increases. The
white dashed line in Figure 7 corresponds to a
gap between the two nanowires of 0.5 nm. This
limit is particularly relevant since below it quantum
mechanical effects cannot be neglected,47 and the

Figure 6. Imaginary part of Ex00 /E00 along the surface of the
nanowire at the first resonant frequency ω = 0.8ωsp, for F =
0.01. The theoretical predictions (continuous lines) and
numerical results (dots) are compared for different dimen-
sions: 20 (blue), 50 (red), 100 nm (green).
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results of our classical approachmay be unrealistic. The
black dashed line represents a nanowire diameter of 10
nm. This corresponds to the limit belowwhich nonlocal
effects cannot be neglected.48 Hence, the maximum
field enhancement that can be obtainedwith nanowire
dimers is limited to 200 under the classical approach.
Larger values correspond to configurations with a gap
or a nanowire diameter too small to neglect quantum
mechanical or nonlocal effects.

Interaction between a Nanowire and a Metal Plate. The
case of a single nanowire placed on top of ametal plate
is now investigated. Besides being simpler to

implement experimentally than a nanowire dimer, this
plasmonic device may provide a better nanofocusing
performance. As wewill see, the transformation wewill
use to solve that problem is closely related to the
nanowire dimer. Hence, the behavior of surface plas-
mons is similar in both structures.

Conformal Transformation. The transformation is
closely related to the one seen previously for nanowire
dimers (see Figure 1). The canonical system is still a
metal-insulator-metal structure but the origin of the
transformation is now placed at the metal-insulator
interface (see Figure 8a). The array of dipoles is also
placed infinitely close to this interface. Now, by apply-
ing to this system the transformation defined in eq 1, a
plasmonic device made of a single nanowire on top of
a metal plate is derived. Note that, contrary to the
transformation studied in ref 42 in which the nanowire
and themetal platewere in contact, there is here a narrow
gap separating the nanowire from the metal plate.

Let us first derive all the geometrical parameters of
the transformed geometry. The diameter of the cylin-
der is given by

D ¼ g

sinh(d)
(30)

The distance δ separating the nanowire from themetal
plate can be expressed as

δ ¼ g

2
tanh(d=2) (31)

The shift s between the axis y0 and the surface of the
cylinder is given by

s ¼ g

1þ ed
(32)

We also define a key parameter,

F0 ¼ δ

D
¼ sinh2(d=2) (33)

which is the ratio between the gap δ and the cylinder
diameter, D. At last, combining eq 30 with eq 33, one
canfind theexpressionsofganddasa functionofDandF0,

g ¼ 2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0(1þ F0)

p
(34)

d ¼ 2 ln(
ffiffiffiffi
F0

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ F0

p
) (35)

In the transformed geometry, the infiniteness of the
metalplate impliesahalfplane-wave illuminationpolarized
along the x0-axis. In the quasi-static limit, the incident field

canbe takenasuniformandequal toE00 in thedielectricbut
should vanish in themetal plate. In the slab geometry, this
uniform field E00 is transformed into a dipolar field for x > 0

coming from an array placed along the interface x= 0with
a pitch 2π and a strengthΔ given by eq 9. On the contrary,

the incident field should be zero for x < 0. The potential
φ induced by this half-space illumination in the slab

geometry is derived in the Methods section (eqs 72-74).

Figure 8. (a) Two semi-infinite metallic slabs separated by a
thin dielectric film support surface plasmons that couple to
an array of dipoles Δ̂ placed on the insulator-metal inter-
face at x = 0. The array pitch is 2π. (b) The transformed
material of panel a is a nanowire of diameterD separated by
adistanceδ froman infinitemetal plate. The array of dipoles
Δ̂ is transformed into a uniform electric field E00 .

Figure 7. Maximum field enhancement |E0|/E00 occurring at
the first resonance (eq 16, n = 1) plotted as a function of the
ratio F and the cylinder diameter D. The white dashed line
represents the region for which the gap δ between the two
nanowires is 0.5 nm. The black dashed line corresponds to a
10-nm diameter for the nanowires.
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Absorption Cross-Section of the Nanowire. In the
case of a nanowire dimer, the absorption cross-section
of the nanostructure was deduced from the electric
field induced by the metal slabs at the dipoles in the
original frame. Here we wish to compute the absorp-
tion cross-section of the nanowire and not of thewhole
plasmonic system (infinite metal plate þ nanowire).
Hence the contributions of the electric field coming
from the different metal slabs of Figure 8a have to be
discriminated. To that aim, the electric field at the
dipoles can be decomposed as, E(z = 0) = Eþ(z = 0) þ
E-(z = 0), with E- and Eþ the fields coming from the
right and the left of Figure 8a, respectively. These two
contributions are derived in the Methods section and
can be expressed as

E( (z ¼ 0) ¼ -
Δ

2πε0
β( (36)

with

β- ¼ ε- 1
εþ 1

Xþ¥

n¼ 1

n

e2nd -
ε- 1
εþ 1

� �2 and

βþ ¼ ε- 1
εþ 1

β- (37)

Compared to its expression in the dimer configura-
tion (eq 14), the dipole power dissipated should be
divided by 2 due to the half-space illumination:

Pext ¼ -
ω

4
ImfΔ̂� 3E(z ¼ 0)g (38)

As we want to have access to the power dissipated by
the nanowire and not by the whole system, the con-
tribution E-(z = 0) (eq 36) should be considered
instead of the total field E(z = 0). In the quasi-static
limit, the absorption cross-section of the nanowire can
then be obtained by normalizing Pext by Pin, but the
latter quantity should also be divided by 2 compared to
its usual value due to the half space illumination: Pin =
εoc|E00 |

2/4. At last, by replacing Δ̂ by eq 9, g using eq 34,
and d using eq 35, the absorption cross-section of the
nanowire can be deduced as a function of D and F0,

σo
a ¼ 8πk0F0(1þ F0)D2

� Im
ε- 1
εþ 1

Xþ¥

n¼ 1

n

(
ffiffiffiffi
F0

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ F0

p
)4n -

ε- 1
εþ 1

� �2

8>>><
>>>:

9>>>=
>>>;
(39)

The absorption cross-section is the sum of the contri-
butions due to each surface plasmon mode supported
by the system. Each mode may give rise to a resonance
at a frequency satisfying the following relation

(
ffiffiffiffi
F0

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ F0

p
)4n ¼ Re

ε- 1
εþ 1

� �2
( )

(40)

This condition of resonance only depends on the ratio
F0 between the gap separating the nanowire from the
metal plate and the diameter of the nanowire (eq 33). It
is worth noting that this relation is slightly different
from the one derived for a nanowire dimer (eq 16).
Figure 9a displays the absorption cross-section of the
nanowire as a function of frequency and the ratio F0 =
δ0/D, for D = 10 nm. Similarly to the dimer case, a
nanowire placed on top of a metal substrate shows
three distinct regimes. For δ0 > D (F0 > 1), the coupling
between the metal plate and the nanowire is weak and
the absorption cross-section of the nanowire shows
only a resonance at ω = ωsp similarly to an isolated
nanowire. Then, for δ0 < D (F0 < 1), there is an hybridiza-
tion between the localized surface plasmon supported
by the nanowire and the surface plasmon propagating
along the metal substrate. Several resonances arise in
the visible spectrum, each one being associated to a
different angular spectrum. These resonances red-shift
when the nanowire approaches the metal substrate.
For δ0 , D (F0 f 0), an infinite number of modes are
excited, which gives rise to a broadband response, as
already studied in ref 42.

Figure 9b shows the comparison of our quasi-static
prediction with the results of a numerical simulation.

Figure 9. Absorption cross-section σa
o normalized by the

physical cross-section D for F0 = δ0/D = 0.025. (a) Depen-
dence in the quasi-static limit as a function of frequency and
the ratio F0 = δ0/D, with D = 10 nm. (b) The quasi-static
theoretical predictions (dashed lines, eq 39) are compared
to numerical simulations (squares) and to the analytical
prediction taking into account radiation damping
(continuous lines, eq 45) for two cylinder diameters: D = 5
nm (blue) and D = 20 nm (red).
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For D = 5 nm, the agreement between the quasi-static
theory and numerical simulations is perfect showing
the precision of our approach in the quasi-static limit.
The confinement of the field in the narrow gap allows
the description of the system under the electrostatic
approximation even though the system is infinite. On
the contrary, for D = 20 nm, a discrepancy arises
between the quasi-static prediction and the numerical
result, due to the radiation losses. Our model should
take into account radiation damping to be able to
predict properly the optical response of a nanowire of
larger dimensions.

Following the same strategy as previously, one can
take into account radiative losses by introducing fictive
absorbers superimposed to emitting dipoles in the slab
geometry. However, the presence of the semi-infinite
metal slab has to be considered in the transformed
geometry to compute the scattered field. This scat-
tered field Es0 will be a superposition of the contribution
from the dipole moment p of the nanowire but also
from its image relative to the metal plate, by virtue of
the theorem of image charges,

Es
0 ¼ - i

k2

8εo
Re 1þ ε- 1

εþ 1

� �
p (41)

Note that, as in our previous work,43 only the imaginary
part of the Green function is considered to express the
scattered field since its real part does not contribute to
the radiative losses. In the slab frame, this uniform field
is transformed into an array of small absorbing parti-
cles whose dipole moment is given by

Δ̂s ¼ - i
π2

2
εog

2ko
2Re 1þ ε- 1

εþ 1

� �
E(z ¼ 0) (42)

To take into account radiative damping, the electric
field E(z = 0) should be rewritten by considering the
contribution of Δ̂s,

E(z ¼ 0) ¼ -
(Δ̂þ Δ̂s)
2πε0

(β- þ βþ) (43)

Replacing Δ̂s by its expression (eq 42) into the last
equation yields

E(z ¼ 0)

¼ -
Δ̂

2πε0

β- þ βþ

1- i
π

4
g2ko

2Re 1þ ε- 1
εþ 1

� �
(β- þ βþ)

(44)

This last equation leads to a new expression for
the power dissipated by the overall system (eq 38)
beyond the quasi-static limit. The scattered power
can also be derived using the new expression of
E(z= 0): Ps =-ω/4 Im{Δ̂s* 3 E(z = 0)}. Then the difference
between these quantities yields the overall absorbed

power Pa = Pext - Ps,

Pa ¼ 2πk0ε0cjE0
0j2F0(1þ F0)D2

� Imfβþ þ β- g�����1- iπD2F(1þ F)k2oRe 1þ ε- 1
εþ 1

� �
(β- þ βþ)

�����
2

(45)

The contribution of the nanowire can be extracted
from the last equation by only considering the imaginary
part of β- (contribution of E-) at the numerator of eq 45.
A renormalization by the incident power, Pin = εoc|E00 |

2/4,
leads finally to a new expression of the absorption cross-
section, valid beyond the quasi-static limit,

σa ¼ 8πk0F0(1þ F0)D2

� Imfβ- g�����1- iπD2F(1þ F)ko2 1þ ε- 1
εþ 1

� �
(β- þ βþ)

�����
2

(46)

The comparison of the last equation with the expression
of σa

o in the quasi-static limit (eq 39) shows that the effect
of radiative damping consists in a renormalization by the
factor at the denominator of eq 46 which scales as ko

2D2.
Figure 9b shows how taking into account radiation

Figure 10. Field enhancement |E0|/E00 arising at the surface
of the nanowire, plotted as a function of the angle θ and
frequency, for different values of F.
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damping can improve the agreement between theory
and numerical simulations here for D = 20 nm (see the
comparison with the electrostatic result). Nevertheless, a
slight disagreement remains and is due to retardation
effects which are not taken into account by our model.
Note also that, beyondD= 20 nm, ourmodel is no longer
sufficient to predict quantitatively the radiative losses.

Electric Field in the Transformed Geometry. The
electric field E0(x0,y0) in the transformed geometry
can be easily deduced from the potential (eqs 17
and 18). Using the expression of the potential φ given
in eqs 73 and 74, the electric field E0 can be expressed as
an infinite sumofmodes (eq 19). The analytical expression
of the modes Ψ(n) is derived in the Methods section
(eqs 76-81).

The resonant feature of these modes is illustrated by
Figure 10 which displays the field enhancement, |E0|/E00 ,
observed along the nanowire surface as a function of the
angle θ and frequency for different values of F0. At each
resonance, the electric field blows up at the nanowire
surface, leading to a drastic field enhancement that can
be superior to102 forF0 ≈0.01. Similarly to thedimer case,
there is a red-shift of resonances when the nanoparticle
approaches the metal surface (i.e., for small values of F0).

Figure 11 shows the electric field distribution asso-
ciated with the first three modes taken at their resonant
frequencies (eq 40). The gap δ0 is fixed to D/100 (F0 =

0.01). The metal is assumed to be silver with permittivity
taken from Johnson and Christy.50 Figure 11 panel sets a
and b represent the imaginary part of the field distribu-
tion along x0 and y0, respectively. These figures can be
easily interpreted with conformal transformation. In the
slab frame, surface plasmonmodes transport the energy
of the dipoles along the surface of metal slabs (see
Figure 8). The same modes are excited in the trans-
formed frame: a SPP propagates along the metal plate
and induces a LSP along the nanowire surface. Similarly
to the dimer configuration, these two surface plasmons
couple to each other in the gap, leading to a drastic field
enhancement. However, unlike a nanowire in contact
with a metal plate,42 the velocity of surface plasmons
does not vanish and energy cannot accumulate infinitely
in the narrow gap. Instead, the SPP continues to propa-
gate along the metal plate without being stopped and
the LSP turns around the nanowire indefinitely before
being absorbed. This leads to the resonant behavior
pointed out previously. Figure 11c represents the ima-
ginary part of the field along the nanowire surface. As for
the nanowire dimer, each mode is associated to an
angular momentum n which represents the number of
spatial periods described by the LSP at each turn around
the cylinder. Figure 11c also highlights the drastic field
enhancement that can be induced at the surface of the
nanowire.

Figure 11. Electric field for F0 = 0.01 associated with the modes n = 1,2,3 (from left to right) at their corresponding resonant
frequencies (eq 40). (a) Amplitude of the imaginary part of ψx0

(n) normalized by the incoming field E0
0 (polarized along x0).

(b) Amplitude of the imaginary part ofψy0
(n) normalized by the incoming field E00 (polarized along x0). For plots a and b, the color

scale is restricted to [-30 30] but note that the field magnitude can be far larger in the narrow gap between the structures.
(c) Amplitude of the imaginary part of ψx0

(n)/E00 (blue) and ψy0
(n)/E00 (red) along the cylinder surface as a function of the angle θ

defined in the figure.
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The theoretical expression of the electric field was
derived under the quasi-static approximation, which is
quite restrictive in terms of applications since radiative
losses start to be significant as soon as D > 5 nm. As
already shown, the effect of radiation damping can be
represented by a simple renormalization of the electric
field. This factor of normalization canbededuced from the
comparison between the expression of the electric field in
the original frame, E(z = 0), with and without considering
the radiative losses (eq 36 and eq 43, respectively). It yields
the following factor of normalization,

η ¼ 1- iπF(1þ F)k2oD
2Re 1þ ε- 1

εþ 1

� �
(β- þ βþ)

(47)

Figure 12 compares our theoretical prediction with nu-
merical simulations of the electric field at the first reso-
nance (n= 1) along the nanowire for F0 = δ0/D= 0.025 and
for different dimensions. Surprisingly, this agreement is
nearly perfect for all dimensions of the nanowire, which
demonstrates the power of our approach. Our theory can
predict quantitatively the field enhancement reached in

the narrow gap separating the nanowire from the metal
plate until a nanowire dimension D = 100 nm.

CONCLUSION

This article has shown how a transformation optics
approach can be a powerful tool to provide an analytical
description and a unique physical insight on the propaga-
tion of surface plasmons in complex nanostructures. This
study has focused on the plasmonic hybridization in the
case of nanowire dimers and of a nanowire placed on top
of a metal substrate but it can be extended to other
configurations such as metallic nanotubes, nanoshells, or
3D dimers.44 In both cases, we have shown that the
interaction between surface plasmons result in several
resonances in the visible spectrum which red-shift when
the two metallic structures approach each other. Each
resonance is associated to a mode characterized by an
angular momentumwhich corresponds to the number of
wavelengths displayed by the surface plasmons when
propagating one time around each nanoparticle. Invisi-
bility dips have also been pointed out between each of
these resonances and result froman interferencebetween
each successive mode. This interference is destructive in
the far-field of the dimer but constructive in its near-field:
these invisibility dips provide a possible path toward the
implementation of noninvasive or invisible nanoantenna.
Our analytical model predicts quantitatively the optical
response as well as the field enhancement induced by
these metallic structures within and beyond the quasi-
static limit, for nanowire diameters below 100 nm. In
practice, this transformationoptics strategy canbeapplied
to the optimization of metallic nanostructures. For in-
stance, our analytical approach might be very useful for
modeling nonlinear effects such as Raman scattering or
fluorescent emission by molecules near metallic nanos-
tructures. As the absorptionandemissionprocessoccur at
different frequencies, a perfect knowledge of the spectral
and spatial properties of the field enhancementmight be
decisive for the implementation of experimental setup
aiming at single molecule detection.

METHODS
Nanowire Dimer. The slab problem is first addressed

(Figure 1a). The near-field approximation is made, hence we
assume that the Laplace's equation is obeyed. Each dipole Δ̂
consists of two line charges. Wewish to calculate the potential φ
induced by the metallic sheets by expanding the incident field
φo of the dipoles as a Fourier series in y:

φo(r) ¼ -
1

2πε0

Xn¼ þ¥

n¼ -¥

Δ̂( 3 r- 2nπ)

jr- 2nπj2 ¼ 1
2π

Z
dk φo(k) e

iky

(48)

φo(k) can be found bymaking a Fourier transform in a transverse
plane at an arbitrary position x:

φo(k) ¼
Z

φo(x, y)e
- iky dy ¼ aþ (k) e- jkjx if x > 0

a- (k) ejkjx if x < 0

�
(49)

with

a( (k) ¼ -Δ

2ε0

Xn¼ þ¥

n¼ -¥
δ[k- n] (50)

where δ[k] denotes the Dirac distribution. The incident field is a
Dirac comb in the k-space, hence only surface plasmon modes
associated to integer spatial frequencies n can be excited.

The next step of our calculation consists in deriving the field
φ(k) inducedby themetal plates located in thehalf planes x<-d/2
and x > d/2. Because of the odd parity of the incident potential
φ0(k) and the symmetry of the system, the induced fieldφ(k) is also
of odd parity. This field can be expressed as follows:

φ(k) ¼
b(k) e- jkjx - b(k) ejkjx , x > - d=2 and x < d=2
c(k) e- jkjx , x > d=2
- c(k) ejkjx , x < - d=2

8<
:

(51)

Figure 12. Imaginary part of Ex00 /E00 along the surface of the
nanowire plotted as a function of the angle θ, at the first
resonant frequency for F0 = 0.025. The theoretical predictions
(continuous lines) and the numerical simulations (dots) are
shown for different dimensions (5, 10, 20, 50, 100 nm). Note
that, because of retardation effects, the resonances are red-
shifted for D > 5 nm (see Figure 9b). Hence the numerical
results are not shown at the resonant frequency predicted by
our theory but at the one observed numerically.
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The two unknowns b(k) and c(k) are then determined by the
boundary conditions at the metallic slab interfaces,

b(k) ¼ -
Δ

2ε0

ε- 1
εþ 1

ejkjd -
ε- 1
εþ 1

Xn¼ þ¥

n¼ -¥
δ[k- n] (52)

c(k) ¼ -
Δ

ε0(εþ 1)
ejkjd

ejkjd -
ε- 1
εþ 1

Xn¼ þ¥

n¼ -¥
δ[k- n] (53)

An inverse Fourier transform of the induced potential
derived in the k-space leads to the solution in the real
space,

φ(x, y) ¼ 1
2π

R
- c(k) eikyþjkjx dk, x < - d=2R
- 2b(k) sinh(jkjx) eiky dk, jxj < d=2R
c(k) eiky- jkjx dk, x > d=2

8>><
>>:

(54)

By injecting the expressions of b(k) (eq 52) and c(k) (eq 53), we
obtain

φ(jxj < d=2) ¼ Δ

2πε0

ε- 1
εþ 1

Xþ¥

n¼ 1

sinh(nz)þ sinh(nz�)
end -

ε- 1
εþ 1

(55)

φ(x > d=2) ¼ -
Δ

2πε0(εþ 1)

Xþ¥

n¼ 0

Rn
end (e- nz þ e- nz�)

end -
ε- 1
εþ 1

(56)

φ(x < - d=2) ¼ Δ

2πε0(εþ 1)

Xþ¥

n¼ 0

Rn
end (enz þ enz�)

end -
ε- 1
εþ 1

(57)

with R0 = 1/2 and Rn>0 = 1. The system here consists of an
infinite sum of discrete modes which gives rise to a reso-
nance when exp(nd) = Re[(ε - 1)/(ε þ 1)]. Note that contrary
to the case of kissing cylinders for which the induced
potential was obtained by directly picking out the pole due
to the surface plasmon modes,12,42 our calculation is here
strictly exact and takes into account the contribution of lossy
surface waves.46

The electric field E0(x0,y0) in the transformed geometry can
be easily deduced from the potential φ (eqs 55-57) using
eqs 17-18. It turns out that the electric field can be decom-
posed as an infinite sum of modes (eq 19). Then, each of these
modesΨ(n) can be expressed in the transformed geometry as a
function of D, F, and E0o, replacing Δ̂ by E00 (eq 9), d by F (eq 4),
and g by D and F (eq 5):

• For |z0 - D/2 þ s| > D/2 and |z0 þ D/2 þ δ þ s| > D/2 (i.e.,
outside the cylinders):
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• For |z0 - D/2 þ s| < D/2 (i.e., in the cylinder on the right of
Figure 1c):

ψ(n)
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ψ(n)
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• For |z0 þ D/2þ δþ s| < D/2 (i.e., in the cylinder on the left
of Figure 1c):
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ψ(n)
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Nanowire on Top of a Metal Substrate. As for the nanowire case,
the slab problem is first addressed (Figure 8a). Because of the
half space illumination, the Fourier component φo(k) of the
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incident field in the slab geometry is given by

φo(k) ¼
Z

φo(x, y) e
- iky dy ¼ a(k) e- jkjx if x > 0

0 if x < 0

�
(64)

with

a(k) ¼ -
Δ

2ε0

Xn¼ þ¥

n¼ -¥
δ[k- n] (65)

Let us determine the field φ(k) induced by the metal plates
when illuminated by the incident field φo(k) (eq 64). This field
can be expressed as follows:

φ(k) ¼
bþ (k) e- jkjx þ b- (k) ejkjx , 0 < x < d
cþ (k) e- jkjx , x > d
c- (k) ejkjx , x < 0

8<
: (66)

The four unknowns bþ(k), b-(k), cþ(k), and c-(k) are then
determined by the boundary conditions at the metal slab
interfaces,

bþ (k) ¼ -
Δ

2ε0

ε- 1
εþ 1

� �2 1

e2jkjd -
ε- 1
εþ 1

� �2

Xn¼ þ¥

n¼ -¥
δ[k- n]

(67)

b- (k) ¼ Δ

2ε0

ε- 1
εþ 1

1

e2jkjd -
ε- 1
εþ 1

� �2

Xn¼ þ¥

n¼ -¥
δ[k- n] (68)

cþ (k) ¼ -
Δ

ε0

1
εþ 1

e2jkjd

e2jkjd -
ε- 1
εþ 1

� �2

Xn¼ þ¥

n¼ -¥
δ[k- n] (69)

c- (k) ¼ Δ

ε0

ε- 1

(εþ1)2
1

e2jkjd -
ε- 1
εþ 1

� �2

Xn¼ þ¥

n¼ -¥
δ[k- n] (70)

Now that the induced potential is known in the k-space, it can
be deduced in the real space via an inverse Fourier transform,

φ(x, y)¼ 1
2π

R
c- (k) eikyþjkjx dk, x < 0R
[bþ (k) e- jkjx þ b- (k) ejkjx ] eiky dk, 0 < x < dR
cþ (k) eiky- jkjx dk, x > d

8>><
>>:

(71)

By injecting the expressions of bþ(k) (eq 67), b-(k) (eq 68),
cþ(k) (eq 69), and c-(k) (eq 70) into the last equation, we
obtain

φ(x < 0)

¼ Δ(ε- 1)

2πε0(εþ1)2
Xþ¥

n¼ 0

Rn
1

e2nd -
ε- 1
εþ 1

� �2[e
nz þ enz

�
] (72)

φ(0 < x < d)

¼ Δ

4πε0

ε- 1
εþ 1

Xþ¥

n¼ 0

Rn

e2nd -
ε- 1
εþ 1

� �2

� -
ε- 1
εþ 1

(e- nz þ e- nz�)þ (enz þ enz
�
)

� 	
(73)

φ(x > d)

¼ -
Δ

2πε0

1
εþ 1

Xþ¥

n¼ 0

Rn
e2nd

e2nd -
ε- 1
εþ 1

� �2(e
- nz þ e- nz�)

(74)

As previously, our problem here consists of an infinite sum
of discrete modes which gives rise to a resonance
when exp(2nd) = Re[(ε - 1)2/(ε þ 1)2]. Now that the slab
problem is solved, we can deduce the solution in the trans-
formed frame.

In the case of a nanowire dimer, the absorption cross-
section of the nanostructure was deduced from the electric
field induced by the metal slabs at the dipoles in the original
frame. Herewewish to compute the absorption cross-section of
the nanowire and not of the whole plasmonic system (infinite
metal plateþ nanowire). Hence the contributions of the electric
field coming from the different metal slabs of Figure 8a have to
be discriminated. The electrostatic potential between these two
slabs (eq 73) can be decomposed as

φ(0 < x < d) ¼ φ- þφþ , with

φ( ¼ 1
2π

Z
b( (k) ejkjx eiky dk (75)

φ
- and φ

þ correspond to the field coming from the right and
the left of Figure 8a, respectively. Their counterpart in the
transformed geometry (Figure 8b) will represent the contribu-
tion coming from the nanowire and the metal plate, respec-
tively. The electric field at the dipoles can be decomposed in a
similar way, E(z = 0) = Eþ(z = 0) þ E-(z = 0), with E( = -rφ

(.
Using the expressions of b((k) (eq 67-68), the potentials φ( can
be deduced (eq 75) and their gradients yield the expressions for
E((z = 0) given in eq 36.

The electric field E0(x0,y0) in the transformed geometry can
be easily deduced from the potential φ (eqs 72-74) using
eqs 17 and 18. It turns out that the electric field E0 can be
expressed as an infinite sum of modes (eq 19). Each modeΨ(n)

can be expressed in the transformed geometry as a function of
D, F0 , and Eo

0 , replacing Δ̂ by E00 (eq 9), d by F (eq 33), and g by D
and F0 (eq 34):

• For x0 < -(s þ δ) (i.e., in the metal plate):
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• For x0 > -(s þ δ) and |z0 - D/2 þ s| > D/2 (i.e., in the
dielectric):
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• For |z0 - D/2 þ s| < D/2 (i.e., in the nanowire):
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